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Abstract: In this paper, we extend the sliding mode idea to a class of unmatched uncertain 
variable structure systems. This method is achieved with introducing a new terminal sliding 
variable and the finite time stability of proposed method is proved using a new particular 
finite time condition in both reaching and sliding phases. In reaching phase a new sliding 
mode controller is derived to guarantee the finite time stability of sliding surface with 
considering matched uncertainty. Also in sliding phase, because of introducing a new 
terminal sliding variable, the finite time stability of state variables with considering 
unmatched uncertainty has been guarantee. Therefore in proposed algorithm we are able to 
adjust reaching and sliding times in the presences of both matched and unmatched 
uncertainty. This algorithm is applied to designing control law for a moving cart system 
with bounded matched and unmatched uncertainties. Simulation results show the 
effectiveness and robustness of the proposed algorithm. 
 
Keywords: Nonlinear Systems, Robust Control, Terminal Sliding Mode Control, 
Unmatched Uncertainty. 

 
 
 
1 Introduction1 
Controlling of uncertain systems is one of the 
challenges of the modern control theory. Sliding mode 
control is one of the robust and effective methods to 
cope with uncertain conditions. Sliding mode control is 
designed to drive the system states to the so called 
sliding surface [1-3]. One of the major advantages of 
sliding mode control is that when the system states are 
on the sliding surface, the closed loop system behavior 
is robust to certain parameter variations and 
disturbances. Sling mode control is well known in the 
robust control theory for its attractive features such as 
fast response, good transient property, and the 
insensitive to the variations of the system parameters 
and disturbances satisfying the matching condition [4-
7]. 

In the literature, Sliding Mode Control (SMC) has 
been widely used for a number of applications. In [8] an 
improved sliding mode control with perturbation 
estimation featuring a PID-type sliding variable and 
adaptive gains for the motion tracking control of a 
micromanipulator system is proposed. In [9], an 
adaptive sliding mode controller for a class of fractional 
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order chaotic systems with uncertainty and external 
disturbance is proposed to realize chaos control. This 
sliding mode controller is shown to guarantee 
asymptotical stability of the considered fractional order 
chaotic systems in the presence of uncertainty and 
external disturbance. Finally in [10, 11] optimal and 
second order sliding mode control is used for solving 
the guidance problem. 

In conventional SMC algorithm, the most commonly 
used sliding variable is the linear which is based on 
linear combination of the system errors by using an 
appropriate coefficient. Then the sliding mode controller 
is designed which drive the system to reach and remain 
on the linear sliding surface in finite reaching time. The 
gains of the sliding mode controller can be adjusted 
such that the sliding variable convergent to zero in 
desired finite time, however, the system states in the 
sliding mode cannot convergent to zero in finite time. In 
other words sliding mode control has finite-time 
convergence to a sliding surface, or is finite-time in 
reaching phase only. However, for high precision 
control, the asymptotical stability may not deliver a fast 
convergence without imposing strong control force [12-
17]. 

Finite time stable systems have not only faster 
convergence but also better robustness and disturbance 
rejection properties. It is well known that finite time 
stabilization of dynamical systems may provide faster 
disturbance attenuation besides giving faster 
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convergence to the desired position [18, 19]. 
Accomplishing finite time error convergence is more 
desirable in practice. Instead of using a linear sliding 
variable, Terminal Sliding Mode Control (TSMC) with 
a nonlinear sliding variable is present. The terminal 
sliding mode was developed by adding the nonlinear 
fractional power item into the sliding variable in sliding 
phase to offer some superior properties, such as finite 
time convergence of state variables, faster and better 
tracking precision. Also nonlinear sliding variable in 
TSMC can improve the transient performance statically 
[12-17], [20]. The continuous time terminal sliding 
mode control and discretization of continuous time 
TSM are analyzed in [16]. In [21] a terminal sliding 
mode observer is proposed for a class of nonlinear 
systems to achieve finite time convergence for all error 
states. Compared to standard sliding mode observers 
which only enable finite time convergence of the output 
error, the observer in this paper makes use of fractional 
powers to reduce other errors to zero in finite time. A 2 
degree of freedom robotic manipulator is used to 
demonstrate the effectiveness of this observer. In [14] 
an adaptive terminal sliding mode control for DC–DC 
buck converters has been presented and the purpose of 
the [20] is to introduce the adaptive TSM controller 
subject to input nonlinearity for complete 
synchronization and anti-synchronization between two 
chaotic gyros, under the existence of system 
uncertainties and external disturbances. In [15] 
derivative and integral terminal sliding mode control is 
presents for a class of MIMO nonlinear systems with 
first to higher order dynamics. In [17] a fast terminal 
dynamics is proposed and used in the design of the 
sliding mode control for SISO nonlinear systems and in 
[22] fast TSM control is used for a helicopter. In [23] 
second order fast terminal sliding mode control scheme 
is proposed to suppress the chaotic motion of a micro 
mechanical resonator with system uncertainty and 
external disturbance. In [24] a fractional terminal sliding 
mode control is introduced for a class of dynamical 
systems subject to uncertainties. A fractional order 
sliding variable is proposed and the corresponding 
control law is designed based on the Lyapunov stability 
theory to guarantee the sliding condition. 

Sliding mode control satisfies the matched 
uncertainty condition only. During the sliding mode, if 
the uncertainties of the system satisfy the so-called 
matching condition, the system behavior has an 
invariant property which is independent of matched 
uncertainties. If the matching condition is not satisfied 
or the system suffers from unmatched uncertainties, 
then the system behavior in the sliding mode is not only 
governed by the switching surface but also determined 
by the unmatched uncertainties. In this case, the system 
stability may not be assured [25, 26]. The idea of 
conventional sliding mode from matched uncertain 
variable structure systems to unmatched uncertain 
variable structure systems is extend in [25, 26] that are 

finite time in reaching phase. And in [27], the 
nonsingular terminal sliding mode control is developed 
for MIMO linear systems with unmatched uncertainties. 

In this paper, we extend the idea of terminal sliding 
mode from matched uncertain nonlinear systems to 
unmatched uncertain nonlinear systems. A new 
nonlinear switching variable is introduced that 
guarantee finite time convergence of state variables in 
sliding mode in the presence of unmatched uncertainty. 
Then a sliding mode controller is designed to guarantee 
the finite time reaching to nonlinear sliding surface in 
the presence of matched uncertainty. This is to say that, 
first the sliding mode controller can curb the state 
trajectory to the nonlinear sliding surface in finite 
reaching phase time and then because of introducing the 
particular nonlinear sliding surface, the state variables 
converge to zero in finite sliding phase time. 

The paper is organized as follows. In section 2 the 
sliding mode control theory is introduced and then in 
section 3 new terminal sliding mode control is 
proposed. In section 4 proposed algorithm is used to 
designing control law for an example and numerical 
simulation results are shown. Conclusions are reported 
in section 5. 
 
2 Conventional and Terminal SMC 

Consider a nonlinear system: 
( ) ( ) ,nX f X u w w α= + + ≤       (1) 

where f(X) is a known nonlinear part, w is a bounded 
uncertainty, X is system state vector and u is the control 
input. Then sliding variable is: 

1
,     

n

d
dS X X X X
dt

λ
−

⎛ ⎞
= + = −⎜ ⎟
⎝ ⎠      (2) 

where λ is a strictly positive constant and Xd is desired 
state. Assume that u in Eq. (1) must be designed such 
that the following system has the desired properties and 
system state reaches to desired state. The tracking 
problem for X = Xd is equivalent to making S = 0. 
Conventional SMC makes S equal to zero in finite time 
and then maintain the condition S = 0 for all future time. 
Typical SMC consists of a reaching mode, during which 
the sliding variable moves to the sliding surface, and a 
sliding mode, during which the sliding variable is 
confined to the sliding surface and the S has no variation 
from sliding surface in system without uncertainty. In 
conventional SMC the control input is designed as 
follow: 

, ( )reach reacheq kSign Su u u u= =−+                                   (3) 

where ueq is the equivalent control determined to cancel 
the known terms on first derivation of S in system 
without uncertainty. If there is no uncertainty in the 
system, the equivalent control u = ueq will maintain the 
system in the sliding surface. If uncertainties exist, a 
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sufficient condition to guarantee the finite time 
attractiveness of S=0 for S≠0, is to ensure: 

V SS Sη= ≤ −            (4) 

where η is a positive constant, which implies that [1-3]: 

(0)
reach

S
t

η
≤             (5) 

Now consider a nonlinear system with relative 
degree 2 and matched uncertainty as follow: 

1 2

2 1 2 1 2

,
( , ) ( , )

x x
w

x f x x g x x u w
α

=
≤

= + +
    (6) 

For stabilization with conventional SMC, the linear 
sliding variable is introduced as: 

2 1S x xλ= +             (7) 

Now assume that the sliding mode controller is able 
to reaching to sliding surface in finite reaching time. 
Therefore we yields: 

2 1

1 2 1 1

0S x x
x x x x

λ
λ

= ⇒ = − ⇒
= ⇒ = −

        (8) 

It’s mean that the state variable x1 is exponentially 
stable. For finite time stabilizing the state variables, 
terminal sliding mode control is designed with 
introducing nonlinear sliding variable as follow [12]: 

2
/

1
p qS x xβ= +           (9) 

where β > 0 is a design constant, both p and q are 
positive odd integers and satisfy the following 
condition: 
1 2p q< <                (10) 

Another equivalent form of the TSM manifold can 
be expressed as follows [28]: 

2 1 1( )S x x sign xαβ= +            (11) 

where 0 < α < 1. 
When the sliding variable (9) reaches to sliding 

surface S = 0, the motion of the system can be described 
by the following nonlinear differential equation: 

2
/ /

1 1 1
p q p qx x x xβ β= − ⇒ = −          (12) 

where ts (sliding time) can be calculated as follows: 

1
1 ( )

( )
q p

s r
pt x t

p qβ
−=

−
           (13) 

and tr is the time when S reaches zero from an initial 
condition. 

The nonlinear sliding variables Eqs. (9) and (11) 
guarantees the finite time stabilization in sliding phase 
but are proper to use for systems with matched 
uncertainty. In next section we introduce a new terminal 
sliding variable for stabilizing sliding phase in systems 
with unmatched uncertainty. 

3 Terminal SMC for Systems with both Matched 
and Unmatched Uncertainty 

Consider a nonlinear system with relative degree 2 
with both matched and unmatched uncertainty as 
follow: 

1 2 1 1 1

2 1 2 2 2 2

,

( , ) ,

x x w w

x f x x w u w

α

α

= + ≤

= + + ≤
        (14) 

where x1 and x2 are state variables, f(x1,x2) is known 
nonlinear part, w1 is bounded unmatched uncertainty, w2 
is bounded matched uncertainty and u is control input. 
Let us introduce a sliding variable: 

1 1
2 1 1 1S x x x γλ −

= +                 (15) 

Assume that the system is on sliding surface and we 
are in sliding mode. Therefore yields: 

1 1
2 1 1 10S x x x γλ −

= ⇒ = −               (16) 

Substituting Eq. (16) in Eq. (14) yields: 
1 1

1 1 1 1 1x w x x γλ −
= −             (17) 

By introducing Lyapunov candidate function: 

2
1 1

1
2

V x=                (18) 

We are able to prove the finite time stability of state 
variable x1 using theorem 1. 

Theorem 1: A sufficient condition to guarantee the 
finite time attractiveness of state variable x1 for x1≠0, is 
to ensure: 

11
1 1 1V x γη +
≤ −               (19) 

where 0<γ1<1 and η1 are strictly positive constants, 
which implies that: 

11
1

1 1

( )
(1 )

r
s

x t
t

γ

η γ

−

≤
−

              (20) 

and ts is the time required to zeroing x1. 
Proof: by Substituting Eq. (17) in Eq. (19) yields: 

( )

1 1

1

1 1

1

1

1 1
1 1 1 1 1 1 1

12
1 11

1 1 11 1
1 1

1
1 1 1 1

1

1
1 1 1 1

1

( )

0

0

x w x x x

x xx
w

x x
x

w x
x

x
w x

x

γ γ

γ

γ γ

γ

γ

λ η

λ η

λ η

λ η

− +

−

+ +

−

−

− ≤ − ⇒

− + ≤ ⇒

− + ≤ ⇒

≥ +

       (21) 

By choosing λ1 in Eq. (21) to be large enough, we 
can now guarantee that Eq. (19) is verified. So that, 
letting from equation Eq. (21) yields: 
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1
1 1 1 1x γλ α η−
= +              (22) 

where α1 denotes the bound of w1. Also Eq. (20) is 
proved as follow: 

( )

1

1

1

1

1

1 1

1 1 1

11 1
1 1 1 1 1

1

0
1 1 1( ) 0

01
1

0
1

( )

1 1
1 1

1 1

1

( ) ( )
1 1

s

r

s

r

t

x t

t

x t

r r
s s

V x x
x d x

x x x x
x dt

x d x dt

x
t

x t x t
t t

γ

γ

γ

γ γ

η

η

η
γ

η
γ η γ

+

−

−

− −

= =

= ≤ − ⇒

≤ − ⇒

≤ − ⇒
−

− ≤ − ⇒ ≤
− −

∫ ∫        (23) 

Therefore the state variable x1 in finite time Eq. (20) 
reaches to zero with condition Eq. (22) and theorem 1 is 
proved. 

Now we require a controller for stabilizing reaching 
mode and reaching sliding variable Eq. (15) to sliding 
surface S=0 in finite time tr. Let a Lyapunov function 
candidate be: 

2
2

1
2

V S=                 (24) 

and a sufficient condition to guarantee the finite time 
attractiveness of sliding variable S for S≠0, is to ensure: 

21
2 2V S γη +
≤ −               (25) 

Let us take the control input as: 

eq reachingu u u= +              (26) 

where ueq is the equivalent control determined to cancel 
the known terms on first derivation of sliding variable in 
system without uncertainty as follows: 

( )

1 1

1

1

1

1 1
1 1 1 1 1 1

1
2 1 1 21

1

1 1
2 2 1 1 1

1

1 1
2 1 1 1

1

(1 )

0

eq

xx x x x x
x

S x f
x

x
f w u f

x
x

u f f
x

γ γ

γ

γ

γ

γ
λ

γ
λ

γ
λ

− −

−

−

−

− −

= + +

= + + + + = ⇒

= − − −

   (27) 

If there is no uncertainty in system Eq. (14), 
equivalent control u = ueq will maintain the system in 
the sliding surface. Now, let us consider the case where 
uncertainties exist. The reaching control is selected as 
follow: 

22 1reching
Su

S γλ −= −                 (28) 

Note that in reaching control Eq. (28) the continues 
function 21S S γ−  has smooth properties than 
discontinues Sign(.) function that is used in 
conventional sliding mode [1-3]. Therefore control 
signal with this reaching part is smooth and low 
chattering compared with conventional sliding mode 
control. 

A sufficient condition to guarantee the finite time 
attractiveness of sliding surface S=0 for S≠0, is to 
ensure Eq. (25) which implies reaching time as: 

21

2 2

(0)
(1 )r

S
t

γ

η γ

−

≤
−

              (29) 

In order to satisfy sliding condition Eq. (25) despite 
matched uncertainty, Substituting Eqs. (26)-(28) in Eq. 
(25) yield: 

1

2

2

2 2 2

2

2

1 1
2 2 1 1 1

1

1
2 2 21

2

2 2 21 1 1

2 2 2

0

eq reaching

V SS

x
S f w u u f

x

SS w S
S

S Sw
S S S

Sw S
S

γ

γ

γ

γ γ γ

γ

γ
λ

λ η

λ η

λ η

−

+

−

+ − +

−

= =

⎛ ⎞
⎜ ⎟+ + + + + =
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟− ≤ − ⇒
⎜ ⎟
⎝ ⎠

− + ≤ ⇒

≥ +

      (30) 

By choosing λ2 in Eq. (30) to be large enough, we 
can now guarantee that Eq. (25) is verified. So that, 
letting: 

2
2 2 2S γλ α η−
= +              (31) 

where α2 denotes the bound of w2. By substituting Eqs. 
(27), (28) and (31) into Eq. (26), control input is given 
as: 

2

1 2

1 1
2 1 1 2 21 1

1

( )
x Su f f S

x S
γ

γ γ

γ
λ α η−

− −= − − − − +      (32) 

With this controller it is certain that the trajectory of 
system converges to the manifold S = 0 at finite time 
and it will be confined to that manifold for all future 
time. Note that the sliding surface also is designed such 
that state variable x1 reaches to zero in finite time Eq. 
(20) after zeroing sliding variable in finite time Eq. (29). 
Therefore system Eq. (14) with terminal sliding mode 
controller Eq. (32) is finite time in reaching and sliding 
modes. 
 
4 Simulation Example  

In this section, the proposed control strategy is 
applied to a cart moving on a plane (Fig. 1). The 
structure of the model is the same as in [29], and is 
represented by: 
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Fig. 1 Graphical representation of the simulation example. 
 
 

1 2 1x x w= +                (33) 

1
2 0 1 2 2

1 ( )x
dx k e x h x w u

M
−= − − + +          (34) 

where x1 is the displacement of the cart with respect to 
the equilibrium position, and x2 is its velocity. M is the 
mass of the cart, k=k0exp(-x1) is the stiffness of the 
spring, and hd is the damping factor. The control 
variable is the force u applied to the cart, while w2 is the 
load force given by the wind. The presence of another 
disturbance term w1 is assumed. The considered system 
is a control-affine system with matched (w2) and 
unmatched (w1) disturbances [29]. 

For designing control law, first we introduce a 
sliding variable as: 

1 1
2 1 1 1S x x x γλ −

= +             (35) 

Finite time reaching displacement of cart in a 
desired value provides the motivation for this sliding 
variable. By a suitable design of controller u, if we are 
able to achieve S = 0, thus guaranteeing finite time 
stabilizing displacement of cart. 

First we assume that controller u has been designed 
and sliding variable is on sliding surface S = 0 and we 
have: 

1 1
2 1 1 1x x x γλ −
=−               (36) 

Therefore the bound of λ1 for finite time stabilization 
displacement of cart by satisfying finite time condition 
Eq. (19) is given as Eq. (22) that guarantee stabilization 
displacement of cart in the presence of unmatched 
uncertainty with finite time Eq. (20). 

Equivalent control determined to cancel the known 
terms on the first derivation of sliding variable as 
follow: 

1
1

1
1

1 1
0 1 2 2 1 1

1

1 1
0 1 2 1 1

1

1 ( )x
d

x
eq d

xS k e x h x w u
M x

x
u k e x h x M

x

γ

γ

γ
λ

γ
λ

−
−

−
−

= − − + + +

⇒ = + −
    (37) 

If there is no matched uncertainty in the system, then 
equivalent control will maintain the system in the 
sliding surface. Now, let us consider the case where 
uncertainties exist. A sufficient condition to guarantee 
the finite time attractiveness of sliding surface S=0 for 

S≠0, is to ensure Eq. (25) which implies reaching time 
as Eq. (29). The reaching control is selected as Eq. (28). 
Then in order to satisfy sliding condition Eq. (25) 
despite matched uncertainty, λ2 is achieved as Eq. (31) 
and control input is given as: 

11
1

2

1

1

1

1

2

1

1

1 1
0 1 2 1 1 1 1

1

1
2 2 1 1 1 21

1

1
2 1 1 1 1

1
1

1
2 1 1 1 1

1

( )

( )

( )

( )

x
d

x
u k e x h x M x

x

x
M x x

x

xx x
x

xx x
x

γ

γ

γ

γ

γ

γ
γ

γ

γ
γ

γ
α η

α α η η

α η

α η

−−
−

−

−

−

−

−

−

−

−

= + − + −

⎛ ⎞
⎜ ⎟+ + + ×⎜ ⎟⎜ ⎟
⎝ ⎠

+ +

+ +

 (38) 

With this controller first the trajectory of system 
converges to the manifold S=0 at finite reaching time 
and then state variable x1 reaches to zero in finite sliding 
time. Therefore system Eqs. (33)-(34) with terminal 
sliding mode controller Eq. (38) is finite time in 
reaching and sliding modes. 

Now, the proposed terminal sliding mode controller 
Eq. (38) is applied to a cart moving on a plane (Fig. 1). 
The structure of the model is the same as in [29], and is 
represented by Eq. (33) and Eq. (34). The values of the 
parameters are M=1 kg, k0=0.33 N/m, hd=1.1 Ns/m. 
 

4.1  Case I: Stabilization of Proposed Algorithm 
In this section we address to stabilization with 

proposed algorithm. The uncertain terms are bounded as 
follows: α1=0.001 m/s and α2=1 N. Figs. 2 and 3 show 
the unmatched and matched uncertainty in this case. 
Fig. 4 show the sliding variable and in Fig. 5 the phase 
plane of system is plotted. As shown in these figures, 
sliding variable reaches to sliding surface S=0 in desired 
time. Also with varying the value of parameter η2, we 
are able to adjust the time of stabilizing sliding surface 
in reaching mode sliding variable. Variation of 
parameter η1 leads to changing sliding surface and 
initial value of sliding variable. 
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Fig. 2 Unmatched uncertainty (Velocity Variation) in Case I. 
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Fig. 3 Matched uncertainty (load force given by the wind) in 
Case I. 
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Fig. 4 Sliding variable. 
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Fig. 5 Phase plane in Case I. 
 
 

Figs. 6 and 7 show the displacement of cart (x1) and 
velocity (x2) with different value for η1 and η2. As seen 
in these figures, the time of zeroing state variables is 
decreased with increasing the value of η2. Therefore the 
stabilization time of state variables is adjustable with 
parameter η2 in sliding phase. 
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Fig. 6 State variable 1 (x1) in Case I. 
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Fig. 7 State variable 2 (x2) in Case I 
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Fig. 8 Control input in Case I 
 
 

Figure 8 present the control input. With increasing 
the values of η1 and η2, the maximum magnitude of the 
control input is increased. Therefore the terminal sliding 
mode controller in Eq. (38) is able to stabilizing states 
and sliding variable in desired finite time. 
 
4.2  Case II: Comparison with Conventional TSMC 

In this case, the performance of proposed algorithm 
is compared with conventional TSMC algorithm. Note 
that the conventional TSMC is not able to controlling 
unmatched uncertain systems. This controller is 
designed with Eq. (9) as sliding variable. Figs. 9 and 10 
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show the unmatched and matched uncertainty in this 
case. Therefore the uncertain terms are bounded as 
follows: α1=0.5 m/s and α2=1 N. 

Fig. 11 shows the sliding variable. As shown in this 
figure, sliding variable reaches to sliding surface S=0 in 
desired time in both proposed and conventional TSMCs 
in the presence of matched uncertainty (w2). Fig. 12 
shows the displacement of cart (x1). As seen in this 
figure, the proposed algorithm is able to controlling this 
variable in the presence of unmatched uncertainty (w2) 
and in the conventional TSMC, this variable is not 
controlled. Fig. 13 show the second state variable and 
control signal is plotted in Fig. 14. 
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Fig. 9 Unmatched uncertainty (Velocity Variation) in Case II. 
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Fig. 10 Matched uncertainty (load force given by the wind) in 
Case II. 
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Fig. 11 Sliding variable in Case II. 
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Fig. 12 State variable 1 (x1) in Case II. 
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Fig. 13 State variable 2 (x2) in Case II. 
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Fig. 14 Control input in Case II. 
 
5 Conclusion 

In this paper, a new TSMC is proposed. This 
algorithm leads to improving the overall performance of 
control system by applying finite time stability 
condition and without estimation of matched and 
unmatched uncertainty. The proposed controller 
guarantees the convergence of the states and sliding 
variables to zero in desired finite time. Simulation 
results show the effectiveness and robustness of the 
controller in control of systems with both matched and 
unmatched uncertainties. 
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